

Inter-Comparison of Passive Samplers under Male declaration

Rajasekhar Bala

CAD Coordinator

Outline

- Introduction
- > Objective
- Theory of Sampling
- Sampling & Analysis
- Results and Discussion
- Conclusion
- > Acknowledgement

Introduction

- At the Seventh Governing Council of South Asia Cooperation Environment Programme (SACEP, 1998) meeting, 'Malé Declaration' was initiated for Control and Prevention of Air Pollution and Its Likely Transboundary Effects in South Asia".
- SACEP countries—Bangladesh, Bhutan, India, Iran, Maldives, Nepal, Pakistan, and Sri Lanka.
- Funded by the Swedish International Development Cooperation Agency, Sida, as part of the Regional Air Pollution in Developing Countries (RAPIDC) programme.

Objectives

After completing some operations under Malé Declaration on Control and Prevention of Air Pollution and its Likely Transboundary Effects in South Asia, member countries have expressed interest to:

- Conduct an inter-comparison of passive samplers in order to identify passive samplers that could be produced and analysed within countries for routine measurements of trace gases.
- Assess the performance of different types of passive samplers for the analysis of NO_2 and SO_2

Reasons for top priority of these gaseous pollutants: chemical transformations leading to acidic deposition, corrosion, and enhanced acidity of airborne particles, and ozone (NO_2) .

Passive Sampling

What is a passive sampler?

Passive vapor sampler

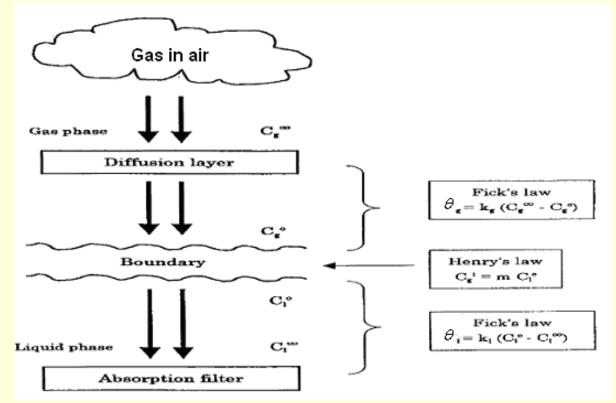
Inorganic Mercury sampler

Air passive sampler (NO₂,SO₂,Formaldehyde)

Gastic Hydrogen cyanide dosimeter tube

Advantages of passive samplers:

- Simplicity, natural diffusivity
- Cost-effectiveness, no pump required
- Capacity building opportunities

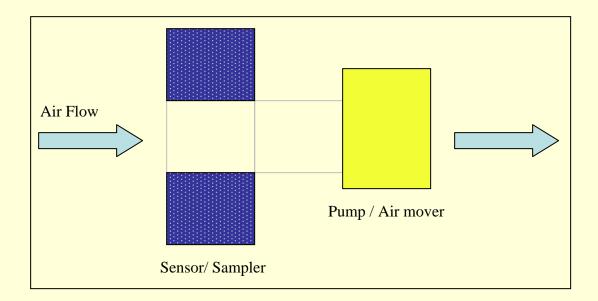

Basic components of a diffusionbased passive sampler

- An inert barrier to convective air
- An air gap between the barrier and the trap
- A trap to collect the pollutant of interest, which diffuses in the air gap at a constant rate
- To avoid back-diffusion, the trap must be a perfect sink for the pollutant of interest

Theory of Passive Sampling

Based on the diffusion of the gas molecules through a diffusive zone to the collection filter

The step of passive sampling theory (adapted from Helaleh, Ngudiwaluyo, Korenaga & Tanaka, 2002)


Passive Sampling

Key questions:

- How long the exposure should be? Sampling = absorption/adsorption; Sampling to be stopped before equilibrium reached; The amount of target molecules collected is dependent on length of sampling time.
 May be necessary to expose as long as 30 days for low concentrations of NO₂ and SO₂
- 2) Is there an accurate active sampler at the site for comparison? Denuder system.

Theory of Active Sampling

Active Sampler (adapted from Lehtimaki & Willeke, 1993)

Components of the proposed study

- Comparison of all chosen passive samplers at National University of Singapore as part of RAPIDC's Composition of Asian Deposition (CAD) Network activities
- Exposure of samplers at other chosen sites in South Asia and South Africa with contrasting conditions
- Parallel analysis of exposed samplers between
 National University of Singapore and Malé Countries

List of Participating Labs

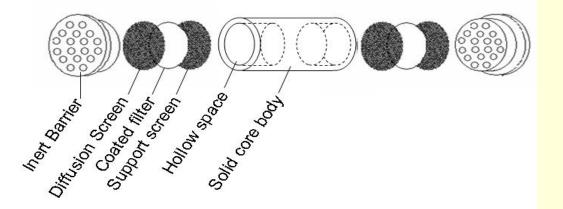
Lab Code	Participant Particulars	Sampler Type	Gases
KVL	Karin Sjoberg IVL Swedish Environmental Research Institute Ltd Sweden	IVL	NO ₂ & SO ₂
NBRO	Thirandra Fernando National Building Research Org (NBRO), Sri Lanka	Ogawa	NO ₂ & SO ₂
NWU-SA	Martin Kobus/Prof. J. J. Pienaar North West University, South Africa	IVL	NO ₂ & SO ₂
CSIR-SA	Patrica Forbes CSIR, NRE, South Africa	CSIR	SO ₂
UP-SL	Prof. Namal Priyantha, University of Peradeniya, Sri Lanka	IVL	NO ₂ & SO ₂
NUS	S. V. Perumal, Div of Environ Sci & Eng National University of Singapore, Singapore	Ogawa	NO ₂ & SO ₂

Sampling & Analysis

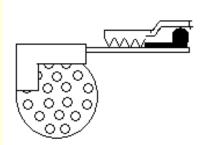
Sampling-Phase I (Comparison of all passive samplers in the study with active

- samplers at the National University of Singapore)
- NUS atmospheric research station (67m above sea level)
 24 Sept 2007-22 Oct 2007
 Exposure of all passive samplers provided by the individual laboratories

(a) Ogawa passive sampler


(b) IVL diffusive sampler

(c) CSIR diffusive sampler



Sampling & Analysis (contd)

One of the samplers used -Ogawa

Exploded diagram of Ogawa passive sampler

Side view (pinclip & body)

Passive samplers

Transport and Storage

- Re-sealable plastic bag
- Airtight container

Exposure in an outdoor environment

- Before exposure, all sampler components should be carefully washed and dried except for the commercially obtained filters
- Washing, drying, assembly of sampler and loading with the proper precoated filters in a clean area, free of NO_x contamination
- To protect the loaded sampler from moisture while exposed
- Use proper shelter to retain proper airflow to the device

Sampling & Analysis (contd) Sampling-Phase I

2) Sampling period: (24 Sept-22 Oct 2007), active samplers were deployed at the NUS site to collect data for NO_2 and SO_2 on a daily basis (exposure for 24 hrs)

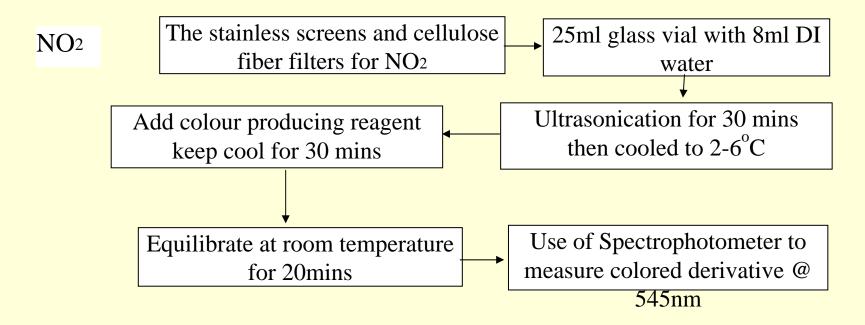
URG annular denuder system (ADS), coated with appropriate chemical reagents

Sampling & Analysis (contd)

Sampling Phase II (Exposure of in-country passive samplers in respective countries and parallel analysis in those countries and at the

National University of Singapore (NUS)

Participating Organisations/ Suppliers exposed their samplers in respective from middle of Feb 2008 to middle of March 2008 (2 sets)


Each Participating Organisation analysed 1 set of sampler NUS combined the data and prepared report

Experimentation (cont'd)

Analytical method

1) The procedures followed for chemical analysis in NUS lab is as follows:

Sampling & Analysis (contd)

Spectrophotometric analysis of NO2 color derivatives

Calculation of Concentration of NO₂ for Ogawa sampler

Concentration of NO₂ (ppbv) = α_{NO2} × collected amount (ng)/ Sampling time (min)

Collected amount-obtained from UV measurement;

Sampling time-converted to minutes;

 α_{NO2} - Concentration conversion coefficients for NO₂

Calculation of Concentration of NO₂

α_{NO2}- Concentration conversion coefficients for NO₂

α_{NO2}= 10000/{(0.677×[P] × [RH])+(2.009×[T]) + 89.8}

 $[P] = \{2P_N / (P_T + P_N)\}^{(2/3)}$

P_N=17.535 (water vapor pressure in mm Hg at 20⁰ C)

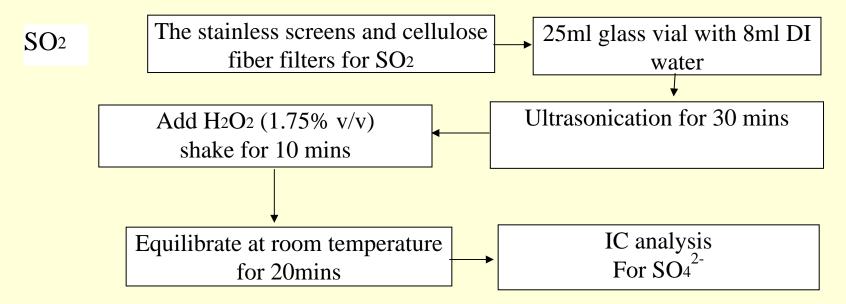
Calculation of Concentration of NO₂

Example: [T] = 9 °C; [RH] = 60%;

weight collected of NO_2 on filter = 8000ng; sampling time = 40000 mins

Ans: $P_N = 17.535$; $P_T = 8.609$ (obtained by typical values)

 $[P] = \{2 \times 17.535 / (8.609 + 17.535)\}^{(2/3)} = 1.216;$

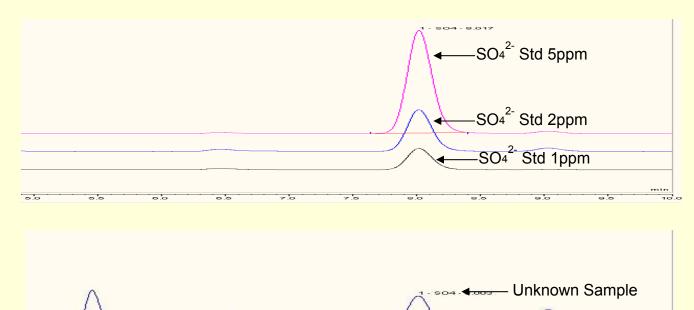

 $\alpha_{NO2} = 10000/[(0.677 \times 1.216 \times 60) + (2.009 \times 9) + 89.8] = 63.58$

NO₂(ppbv) = 63.58×8000/40000 = 12.72 ppbv

Sampling & Analysis (contd) Analytical method (cont'd)

The procedures followed for chemical analysis in NUS lab are:

2) The procedures followed for chemical analysis in member countries except for NUS are not known and not discussed



Sampling & Analysis (contd) IC method for sulphate

Pressure 0 Flow = 11 158 = 17 159 = 17 159 = 17 159 = 17 159 = 17	; Pump_EC ; Pump_EC ; Pump_EC ; Pump_EC	Suppressor_Type = D.Carbonate = D.Bicarbonate = D.Hydroxide = D.Tetraborate = D.Other eluent = D.Other eluent =	ASRS_4mm 0.0 0.0 30.0 0.0 0.0 112	
Pump_ECD (ICS-2000)	, ranp_bo.	Suppressor_Current = Pressure.LowerLimit = Pressure.UpperLimit = %A.Equate =	200 [mA] 200 [psi] 3000 [psi] "%A"	
EluentGenerator	0.000	CR_TC = Concentration = Curve = Flow =	On 20.00 [mM] ← 5 1.00 [ml/min] ← "Please Inject ne	
Pump_ECD (ICS-2000)	0.000	Message Autozero ECD_1.AcqOn Pump_InjectValve.InjectPosition		ашртя
	10.000	ECD_1.AcqOff		
Relay and State Devices	Ĩ	End		
	<			>

Sampling & Analysis (contd) IC chromatograph for SO4²⁻

7.5

8.0

8.5

5.0

5.5

6.0

6.5

7.0

Sample Blank

9.0

min

10.

9.5

Calculation of Concentration of SO₂ for Ogawa sampler

Concentration of SO₂ (ppbv) = α_{SO2} × collected amount (ng)/ Sampling time (min)

Collected amount-obtained from IC measurement;

Sampling time-converted to minutes;

 α_{SO2} - Concentration conversion coefficients for SO₂

Calculation of Concentration of NO₂

α_{SO2}- Concentration conversion coefficients for SO₂

 α_{SO2} only relevant to ambient temperature

At 20°C the value of α_{SO2} =39

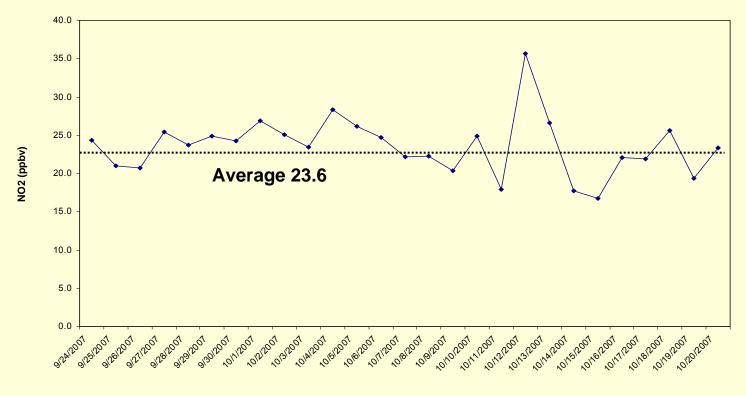
If the sampling conditions are other than 20°C, we can refer to a table which provides α_{coo} at various commonly

Conversion coefficient $\,\alpha\,_{\text{SO2}}$ for SO2 as a function of temperature

Temperature T °C	Diffusion Coefficient D _T cm ² /sec	Ratio of Diffusion Coefficients D_{20}/D_T	Conversion Coefficient a _{SO2} Ppb-min/ng
-10	0.1068	1.22	47.5
-9	0.1076	1.21	47.2
-8	0.1083	1.20	46.9
15	0.1261	1.03	40.3
16	0.1269	1.03	40.0
17	0.1277	1.02	39.8
38	0.1452	0.90	35.0
39	0.1460	0.89	34.8
40	0.1469	0.89	34.6

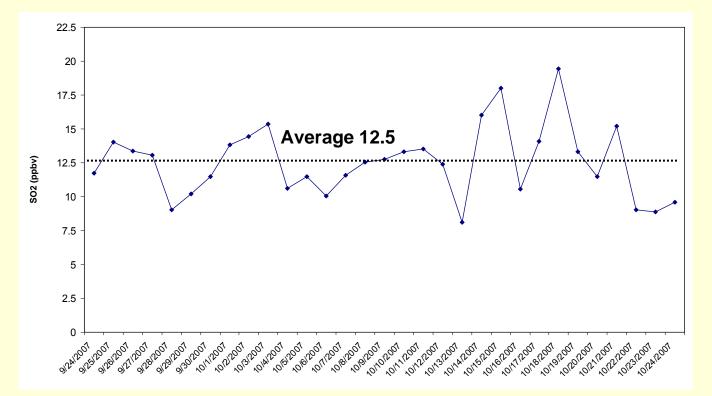
Calculation of Concentration of SO₂

Example: [T] = 16.5 °C; weight collected of SO₂ on filter = 8000ng; sampling time=40000 mins

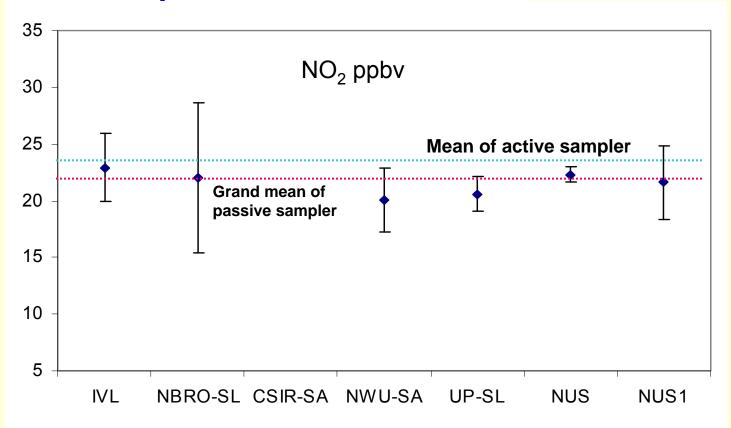

Ans: Refer to the table,

 $\alpha_{SO2} = 39.9$

SO₂(ppbv) = 39.9×8000/40000 = 7.98 ppbv


Phase I-Active Sampler Data

Daily average concentration of NO₂


Phase I-Active Sampler Data

Daily average Concentration of SO₂

Inter comparison data-Phase I

Inter comparison data-Phase I 18 SO₂ ppbv 16 14 Mean of active sampler data 12 10 Mean of passive sampler data ₹ 8 6 4 2 0 IVL NBRO-SL CSIR-SA NWU-SA **UP-SL** NUS

Phase I-Statistical Analysis of individual data by ANOVA

Analytes	F value	F Critical	P Value
NO ₂	1.46	3.1	0.27
SO ₂	2.95	3.1	0.06

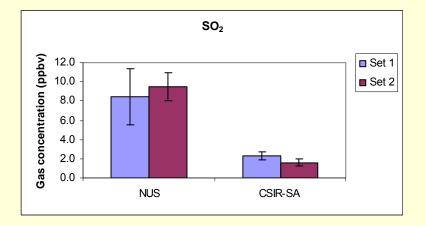
ANOVA single factor analysis shows that results obtained from different passive samplers are not significantly different.

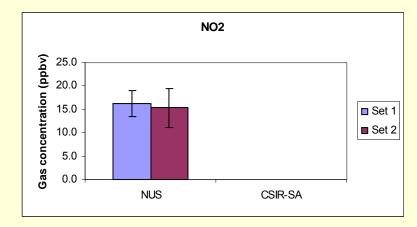
Phase II

Table 1 provides the details of the exposed samplers we have received from The participating laboratories as of now

Sampling Sites Items	CSIR-SA	NUS
Sampler Type	CSIR	Ogawa
Sampling Time (min)	41760	47880
Average Temperature (°C)	23.6	26.6
Average Humidity	63.0	84.6

- a. Set 1 was analyzed at NUS;


- b. Set 2 was analyzed in respective countries.


- Two sets of samples collected in NUS were analyzed by NUS lab.

Phase II

In-country comparison of passive samplers for SO₂ and NO₂

Conclusion

- All three type passive samplers could be used for NO₂ and SO₂ in the outdoor environment under urban pollution conditions;
- Larger variation particularly for SO₂ between the samplers of different types and also within the samplers of the same type is possibly due to: analytical uncertainties; the difference in the sampling efficiency based on different coating solutions

Conclusions

- All three type passive samplers could be used for NO₂ and SO₂ in the outdoor environment under urban pollution conditions;
- Larger variation particularly for SO2 between the samplers of different types and also within the samplers of the same type is possibly due to: analytical uncertainties; the difference in the sampling efficiency based on different coating solutions

Future work

- a) To continue to work with collaborative partners to complete the remaining phase of the study on "In-country comparison of passive samplers for SO₂ and NO₂";
- b) To start 2nd round robin tests in order to evaluate the performance of these passive samplers at different concentration levels under different weather and pollution conditions (dry season in Singapore);
- c) A comprehensive report will be prepared based on the proposed inter-comparison and inter-laboratory exercises.

Acknowledgement

- All the participating laboratories;
- Dr. Kevin Hicks, Stockholm Environment Institute;
- Professor Henning Rodhe, Stockholm University;
- Iyngara & Jacob Kurian, UNEP;
- Financial support provided by Sida(RAPIDC)/UNEP.